

Emergency epilepsy 2019

Dr Jenny Vaughan

Imperial Healthcare NHS Trust

Talk outline

- Recognising seizure types
- Management of status epilepticus

1:53:24:1

Some definitions

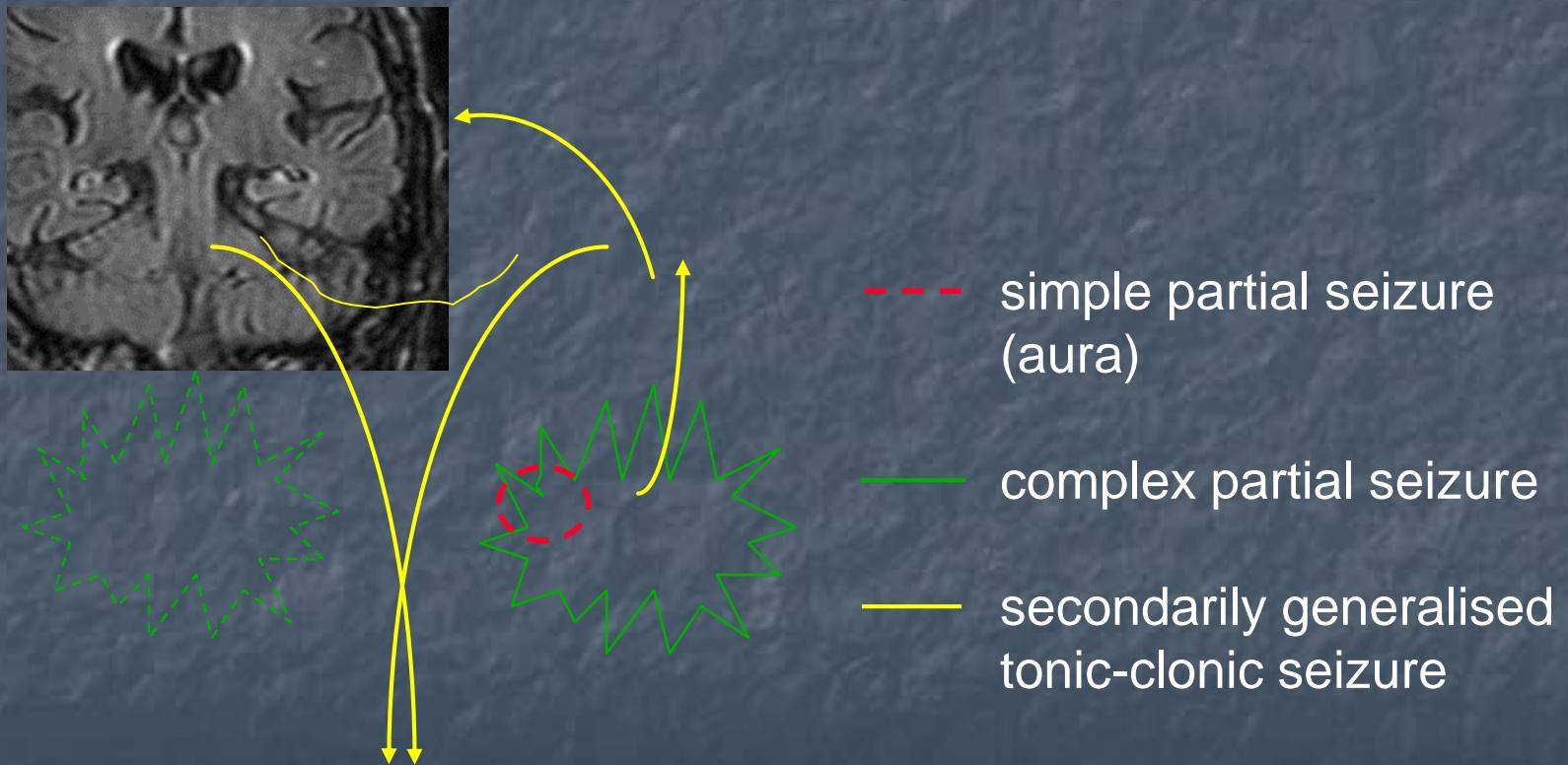
- **Epileptic seizure**

A clinical manifestation presumed to result from an abnormal and excessive discharge of a set of cortical neurones

Provoked = < 7 days from insult

Unprovoked

- **Epilepsy**


A condition characterised by recurrent (>2) unprovoked epileptic seizures

- **A seizure is a symptom and not a diagnosis**

Classification of seizures

- Partial (partial onset, focal)
 - Simple partial (no impairment of consciousness)
 - Complex partial (with impairment of consciousness)
 - Secondary generalised
- Generalised (primary generalised)
 - Myoclonic jerks
 - Absence ("petit mal")
 - Tonic-clonic, tonic, clonic, atonic

Schematic representation of partial seizures

What to ask....

N.B. patient and eye witness account is crucial

- Nature of the episode
 - warning symptoms
 - loss or impairment of consciousness
 - duration
 - ? focal onset ?tonic-clonic phase, ?myoclonic jerks
 - unresponsiveness, incontinence, tongue biting, cyanosis
 - post-ictal symptoms: drowsy, confused, headache, myalgia
 - trigger(s): lack of sleep, alcohol
 - headache, dementia, focal deficit etc.
- Associated neurological symptoms, past medical Hx + neurological insults

Syncope

- typical warning (unless cardiac cause)
- often external triggers
- collapse, usually motionless, short
- myoclonic jerks may occur, simulating a GTC
- incontinence can occur
- recovery rapid, without confusion

1:53:24:1

Non-epileptic seizures

- Difficult to accurately diagnose and usually require videotelemetry
- Diagnosis should be made by a specialist
- Often mixed with epileptic seizures
- Consequences of incorrect labelling of condition extensive

17:59:27
24.07.19.96

Investigation of seizures

- Routine haematology/biochem esp. FBC, U&E, LFT, bone chemistry, Mg²⁺, glu, γ GT, ?urine drug screen
- ECG (acutely) and EEG (usually as outpatient)
- Neuro-imaging * if new onset: CT (?contrast) +/- MRI
- CSF examination if CNS infection/SAH possible

* scan is mandatory if: focal seizure onset, focal signs, middle aged/elderly, >1 seizure, failure to recover, other neurological symptoms, fever

Seizures and prolactin

- Vukmir. J. Neurol 2004
 - ↑ prolactin in 42 % of seizure patients and 17 % of non seizure patients → sensitivity 42%, specificity 82%
- Cordingly. Am J Em Med '93
 - ↑ prolactin in 8/11 syncope cases
- Ahmad. Em Med J 2004 – meta-analysis
 - If prolactin > 3x normal then 9 x more likely GTCS than NES and 5 x more likely than syncope
- **i.e. not to be relied on** - If it is to be measured, measure at 20 minutes and certainly < 1 hr, then again at 24 hrs

Emergency treatment of seizures

- Airway, Breathing, Circulation assessment
- check for/treat hypoglycaemia, hypoxia, electrolyte disturbance, acidosis
- Pabrinex if suspected alcohol misuse
- self-terminating, brief, single seizures do not require treatment
- IV lorazepam if recurrent/prolonged seizures

Convulsive status epilepticus

- **Definition:**
“a condition in which convulsive epileptic activity persists for 30 mins or more”. Can be single prolonged or recurrent GTC without clinical recovery in between.
- Most seizures last < 2 min, average 1 minute
- The longer seizures continue, the more refractory to treatment they become
- Seizures lasting more than 5 minutes should be addressed as impending status
- Only 3 controlled double blind studies with specific questions published
- Requires local guidelines and protocols

Status epilepticus

Medical History, 1990, 34: 185-198.

TEXTS AND DOCUMENTS

TRANSLATION AND ANALYSIS OF A CUNEIFORM TEXT
FORMING PART OF A BABYLONIAN TREATISE ON
EPILEPSY

by

J. V. KINNIER WILSON and E. H. REYNOLDS *

Give lorazepam

Aetiology of status epilepticus

- 34% low concentrations of AED pts with chronic epilepsy
- 22% CVA
- Anoxia / hypoxia 10%
- Metabolic 10%
- Alcohol and drug withdrawal 10%

Convulsive status epilepticus

- Basic life support...ABC
 - The most rapid and effective way to secure an airway is to terminate the seizure
 - If intubated, NMJ blocking agents only block the peripheral manifestations of seizures
- Maintain BP
- Check BM
- Give anticonvulsants
- Examine the patient !!

Convulsive status epilepticus

- Think of underlying cause and treat if possible

e.g.

- hypoxic/ischaemic – high mortality
- encephalitis, metabolic, alcohol
- secondary generalised from abscess / tumour
- stroke - common in elderly
- low AED levels in known epileptic

Ix in status

- FBC, clotting, U&E, Glu, LFTs, Ca Mg
- Gases
- AED levels
- Serum and urine for toxicology
- CXR
- CT brain
- EEG monitoring

Drug treatment of convulsive status epilepticus

- Early IV lorazepam (or diazepam)
- Established IV phenytoin, (fosphenytoin)
Consider valproate and/or phenobarbitone.
- Refractory Propofol / midazolam / thiopentone anaesthesia in ITU

First Line drugs

Diazepam or lorazepam ?

Diazepam

- Peak concentrations 3 – 15 mins post IV
- Rapid fall in plasma level with redistribution to muscle
- After repeated dosing, saturated fat and muscle stores leading to risk of CNS / cardiorespiratory depression

Lorazepam

- More effective as rapidly as diazepam
- Long duration of action
- Little risk of accumulation
- Less likely to require intubation

Second line drugs

Dept Vet Aff Co-operative study
NEJM 1998

Four treatment regimens tried

- lorazepam
- phenytoin
- phenobarb
- diazepam and phenytoin

% responding to	
First agent	56%
Second agent	7%
Third agent	2.3%
Any other agent	23.2%
Not responding	11%

Second line drugs

phenytoin

- Effective in 10-30 minutes
- Loading dose of 1000 mg often ineffective – should be 18-20 mg/kg
- Rate < 50 mg/min, cardiac monitor
- If not effective give extra 5-10 mg /kg
- Then 100 mg tds
- Fosphenytoin
 - Pro-drug of PHT without propylene-glycol carrier
 - Therapeutic in 10 minutes
 - Given as phenytoin equivalents

Second line drugs

phenobarbitone

- Very effective in status if adequate doses
- Particularly good for secondary generalised
- Load at 20 mg / kg, then 45-90mg bd
- Respiratory and circulatory depression at high doses

Second line drugs

valproate

- Less sedating than PB
- Load at 15 mg / kg, then 1mg / kg / hr
- Higher doses have been used up to 40 mg / kg loading and 6 mg / kg / hr
- Less cardiovascular or respiratory depression than PHT / PB
- Watch for ammonium

Then what ?

- **Alert anaesthetist and transfer to ITU if:**
 - **If seizures not controlled in 10 minutes with lorazepam and PHT/PB or VAL**
 - **Failure to maintain O₂ saturations**
- **Note in persistent coma after termination of overt seizures, 50% will have electrographic seizure activity**
- **They need anaesthetics – continued seizures cause**
 - **Tachyarrhythmia, pulmonary oedema, rhabdomyolysis**
 - **Cortical damage and long term neurological dysfunction**

Pentobarbital vs midazolam vs propofol on ITU

- Mixed data from comparative studies
- Seizure control:
 - PB > midazolam = propofol
- Mortality
 - Propofol > midazolam = PB
- Safety profile
 - Midazolam > PB > propofol
- Thiopentone is often used PB equivalent in Europe

On ITU

- May need pressors to maintain BP, monitoring required
- May require treatment of acidosis if hypotensive and $\text{pH} < 7$
- Watch out for complications e.g ileus and rhabdomyolysis
- Monitor the EEG

EEG monitoring on ITU

- Ideally continuous EEG monitoring relayed to neurophysiology department
- Second best – daily EEG recordings
- Cerebral function monitors and amplitude integration EEG devices
 - Dependent on interpretation – training
 - Often artefacts misinterpreted
 - Patient needs to be paralysed

Last resorts

- Topiramate e.g. 200 - 700 mg bd via NGT
- Levetiracetam up to 1500 mg bd via NGT
- Ketamine if neuroimaging normal

Bed 1

- 30 yr old lady presented with first seizure – witnessed by boyfriend
- Some sleep deprivation as trigger
- Normal birth history and milestones
- No FH of seizures
- Whole body stiffened, clonic jerking of arms and legs
- Slightly confused post ictally but normal by 2 hrs
- Left lateral tongue biting
- Examination normal

Bed 1

What do I do now?

1. Discharge with letter to 'first fit' clinic
2. CT scan
3. Give valproate and discharge
4. Give carbamazepine and observe for 24 hrs

“red flag” situations necessitating admission

- >1 seizure in 24 hours
- Failure to recover fully after seizure
- Pregnancy-associated or post-partum seizures
- Worrying associated symptoms:
 - Fever, rash
 - Prodromal or severe post-ictal headache
 - Confusion, hallucinations, drowsiness
- Focal neurological symptoms or signs (of probable recent onset)

Patients with single self terminating generalised seizure and full recovery

- can be discharged home if examination, bloods, ECG + CT brain (if done) normal
- book outpatient EEG and refer for urgent OP appt
- discuss starting Rx with on-call neurology SpR if previous GTC seizures or additional seizure types eg. myoclonic jerks, partial seizures
- Inform that must not drive + give safety advice

Take home points

- Context of attacks e.g witness history
- What kind of seizure ?
- Look for precipitants
- ABC to N
- Lorazepam best first choice
- Give enough phenytoin
- Barbiturates / midazolam / propofol